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ABSTRACT
Introduction: Chronic non-specific low back pain is a leading cause of disability worldwide. While resistance training using 
external loads is common in rehabilitation, its added value over unloaded exercise remains uncertain, particularly across physi-
cal and psychological variables.
Method: This systematic review and meta-analysis, registered on PROSPERO (CRD42022366975), included randomized con-
trolled trials comparing externally loaded resistance training to unloaded exercise in adults with chronic non-specific low back 
pain. Primary outcomes were pain intensity and disability. Secondary outcomes included back muscle endurance, maximal 
strength, fear-avoidance beliefs, and pain catastrophizing. Random-effects meta-analyses were conducted, stratified by follow-
up duration.
Results: Thirteen randomized trials (778 participants) were included. At follow-up periods beyond seven weeks, externally 
loaded resistance training showed a small but statistically significant reduction in pain compared to unloaded exercise (mean 
difference = –0.52 on a 0-10 scale; 95% confidence interval [–0.92, –0.08]). No significant differences were found at short-term 
or post-washout follow-ups. Effects on disability were inconsistent and highly variable. Resistance training was associated with 
improvements in back muscle endurance and suggested a possible effect on long-term maximal strength, although wide pre-
diction intervals prevent definitive conclusions. No meaningful differences were found for psychological variables, and pain 
catastrophizing was assessed in only one trial, limiting conclusions.
Conclusion: Externally loaded resistance training is safe and feasible for chronic non-specific low back pain, but its effects on 
pain, disability and psychosocial outcomes are comparable to unloaded exercise. In line with the multifactorial nature of chronic 
pain, improvements appear driven more by exposure, adherence and therapeutic context than by load intensity alone. Exercise 
prescription should therefore remain individualized and embedded within a biopsychosocial framework.
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What’s already known about this topic?

•	 RT can enhance both strength and endurance. The specific role of 
load as a variable in RT for managing chronic NS-LBP, particularly 
its impact on pain and disability, remains not fully established.

What does the study add?

•	 While loaded exercises induce greater neuromuscular adapta-
tions, they do not provide better improvements in pain or disabil-
ity compared to unloaded exercises in individuals with chronic 
NS-LBP. Exercise volume and adherence may play a more signifi-
cant role in symptom management. 

Introduction
Low back pain (LBP) is the most prevalent musculoskeletal 

disorder (1), affecting approximately 540 million people world-
wide at any given time (2). When no specific patho-anatomical 
cause can be identified, LBP is classified as non-specific 
(NS-LBP) (3). Among all musculoskeletal conditions, chronic 
NS-LBP represents the leading cause of disability, as measured 
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in disability-adjusted life-years (4), posing a significant burden 
on healthcare systems and affected individuals.

Traditionally conceptualized through a biomechanical 
lens, chronic NS-LBP is now widely recognized as a multifacto-
rial condition in which pain and disability arise from dynamic 
interactions among biological, psychological, and social fac-
tors (5). This paradigm shift has supported the adoption of 
the biopsychosocial (BPS) model as the best practice for its 
understanding and management (6).

Exercise is widely recommended as the first-line treat-
ment for chronic NS-LBP, as highlighted by the National 
Institute for Health and Care Excellence (NICE) guidelines (7). 

Beyond its physical effects, exercise can be conceptual-
ized as a multidimensional therapeutic intervention, capa-
ble of modulating psychological and behavioral processes 
(8). Evidence suggests that physical exercise may positively 
influence factors such as anxiety, mood, fear-avoidance, and 
pain-related beliefs (9,10), reinforcing its role within the BPS 
model. 

Despite its recognized value, the optimal characteristics 
of exercise interventions for chronic NS-LBP remain unclear. 
Current literature shows limited differences in effectiveness 
between various exercise modalities, with generally modest 
improvements in pain and disability (11,12). This suggests a 
need to move beyond broad exercise categories and instead 
focus on specific intervention components that may drive 
better outcomes.

One such component is the type and intensity of resis-
tance, or load, used during training. Resistance training 
(RT)  is a form of physical exercise involving internal (e.g., 
body weight) or external (e.g., free weights, machines, 
bands) resistance to stimulate skeletal muscle contractions, 
aiming to enhance strength, power, muscular endurance, 
and muscle mass (13,14). Although RT is commonly applied 
in rehabilitation settings, the optimal dosage and resistance 
parameters for chronic musculoskeletal conditions remain 
poorly defined (15-17). In research, the term “load” typically 
refers to external resistance, distinguishing “loaded” from 
“unloaded” exercises (18).

Loaded exercises may induce adaptations across multi-
ple, interrelated domains. They have been associated with 
greater gains in muscle strength (19), soft tissue capacity 
(20), cartilage turnover (21), as well as enhanced neuro-
chemical responses which have been linked to increases in 
pain thresholds (22,23). Incorporating external load may 
serve as a graded exposure stimulus, helping patients con-
front fears, rebuild confidence in movement, and challenge 
beliefs related to fragility or harm (7). Such mechanisms may 
be particularly valuable for targeting maladaptive responses 
such as fear-avoidance, kinesiophobia, and pain catastroph-
izing, which are known to contribute to the persistence of 
chronic NS-LBP (24). 

Although the addition of external load to an exercise 
program may influence the adaptations described above, 
its specific contribution to clinical outcomes remains poorly 
understood (25,26). Available studies are hindered by incon-
sistent terminology, insufficiently described loading protocols 
and inadequate control conditions lacking active compar-
ators (17,27). Therefore, it remains unclear to what extent 

the inclusion of external resistance affects the multifaceted 
nature of chronic NS-LBP.

This systematic review and meta-analysis consequently 
seeks to address the following question: “To what extent 
does the use of external load in resistance training influence 
symptoms, function, and psychosocial factors in chronic 
NS-LBP management?”

The primary objective of this systematic review and 
meta-analysis was to assess the effects of RT with external 
resistance compared to unloaded exercises on pain and dis-
ability. Secondary outcomes included physical performance 
metrics (muscle endurance, maximal strength) and psycho-
social variables (fear-avoidance, kinesiophobia, and pain 
catastrophizing).

Methods
This study followed the guidelines outlined in the 

‘Cochrane Handbook for Systematic Reviews of Interventions’ 
(28) and was structured in accordance with the PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) Statement (29). The PRISMA checklist is reported 
in ‘Appendix A’. 

Eligibility criteria

The eligibility criteria were developed based on a 
research question structured according to the Population–
Intervention–Comparison–Outcome (PICO) framework. The 
population of interest comprised adults (≥18 years) diag-
nosed with chronic NS-LBP. Eligible Interventions included RT 
programs that incorporated external loads, either alone or in 
combination with internal resistance (bodyweight). To isolate 
the effect of external loads in RT, studies were excluded if 
the experimental group received multimodal interventions 
involving additional exercise modalities (e.g., aerobic training, 
motor control exercises) or therapies (e.g., manual therapy).

For the Comparison group, only exercise interventions 
without any form of external resistance—hereafter referred to 
as unloaded exercises (UE)—were considered eligible. Eligible 
studies had to report on at least one of the primary Outcomes. 

Only randomized controlled trials (RCTs) were included. 
Studies were excluded if they included individuals with spe-
cific LBP (e.g., fractures, radicular pain, radiculopathies, spi-
nal stenosis, or axial spondylarthritis) or with a history of 
spinal surgery. Finally, while studies not available in English or 
Italian were excluded, no restrictions were applied regarding 
publication date or methodological quality.

Information sources and search strategy

Two independent reviewers (MR and DF) each devel-
oped and conducted a separate literature search, working 
in a blinded manner without any prior agreement on which 
databases to search. The search strategies were based on the 
previously defined PICO framework, although no terms were 
included for the Comparison component to reduce the risk of 
missing relevant studies. 

As recommended by the Cochrane Handbook (28), three 
core electronic databases were searched: PubMed, Cochrane 
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Library, and EMBASE. Filters for “Randomized Controlled 
Trial” in PubMed and “Trial” in the Cochrane Library were 
applied to restrict the results to study types relevant to the 
review’s objective. To enhance comprehensiveness, two mul-
tidisciplinary databases (Scopus and Web of Science), a phys-
ical therapy-specific database (The Physiotherapy Evidence 
Database - PEDro) and gray literature sources (Google 
Scholar) were also queried.

The searches were first conducted in September 2022 and 
subsequently updated in October 2024 and March 2025. Full 
search strategies, including the specific databases, search 
terms, and filters used, are provided in ‘Appendix B’.

Finally, a planned citation search was also performed 
by screening the reference lists of previously published sys-
tematic reviews investigating the effects of exercise on LBP 
(11,12,25,27,30-35) to enhance the comprehensiveness of 
the search strategy.

Selection process

The search results were imported into Rayyan software 
(Online), where duplicate records were manually removed 
before screening (36). 

Two independent reviewers (MR and DF) conducted 
a blinded, independent screening of titles and abstracts. 
Studies meeting the eligibility criteria at this stage were 
exported to an Excel file, and their full texts were retrieved. 
The reviewers then independently assessed the full texts in a 
blinded manner. Any discrepancies during the screening pro-
cess were resolved through discussion between MR and DF 
or, if necessary, with the involvement of a third reviewer (AP). 
Inter-rater agreement was not calculated.

Data collection process and data items

Two independent reviewers (MR and DF) extracted data 
from each included study. To standardize the process, a 
structured synoptic Excel spreadsheet was developed, in line 
with the recommendations of the Cochrane Handbook of 
Systematic Reviews (28).

The extracted data included: (i) Study characteristics: 
lead author, publication year, sample size, duration, adverse 
events and follow-up. (ii) Population details: sex, age, height, 
weight, BMI, baseline pain, baseline disability, duration of 
symptoms and baseline level of activity. (iii) Intervention 
characteristics: exercise type and name, type of resistance, 
total duration of the intervention, weekly frequency, session 
duration, number of sets and repetitions, baseline and peak 
intensity and progression parameters. (iv) Outcomes: mean 
and standard deviations at every follow-up, as reported in 
the studies or, when not available, derived from other sum-
mary statistics using the conversion methods recommended 
in the Cochrane Handbook (28).

Outcome measures 

Pain intensity and disability were the primary outcomes of 
the systematic review. Pain intensity was assessed based on 
the Visual Analog Scale (VAS) and Numeric Pain Rating Scale 

(NPRS), while disability was evaluated using the Oswestry 
Disability Index (ODI) and Roland and Morris Disability 
Questionnaire (RMDQ).

Secondary outcomes included measures of physical per-
formance and psychosocial variables. For physical perfor-
mance, eligible measures comprised back muscle endurance, 
as assessed by the Biering-Sørensen test (BST), and maximal 
strength, expressed in terms of muscle force (newtons, N) 
or joint torque (newton-meters, N·m). Psychosocial out-
comes included fear-avoidance beliefs related to physical 
activity (Physical Activity subscale of the Fear-Avoidance 
Beliefs Questionnaire, FABQ-PA), kinesiophobia (Tampa 
Scale of Kinesiophobia, TSK) or pain catastrophizing (Pain 
Catastrophizing Scale, PCS). The FABQ-PA subscale was 
selected as a relevant measure of fear-avoidance beliefs due 
to its specific focus on movement and exercise (37), its estab-
lished construct validity (37,38), and its documented associ-
ation with disability and less favorable clinical outcomes in 
individuals with chronic NS-LBP (39,40).

Study risk of bias assessment and certainty of  
evidence grading

Two independent reviewers (MR and DF) conducted a 
blinded risk of bias assessment for each primary and secondary 
outcome using the revised version of the Cochrane Risk of Bias 
Assessment Tool (RoB2) (41). Risk-of-bias plots were generated 
using the Robvis tool (42). The Grading of Recommendations, 
Assessment, Development, and Evaluation (GRADE) system 
was used to assess the certainty of evidence at each follow-up 
for each outcome. The grading process was conducted using 
‘GRADEpro’ (43).

Effect measures

The effect size used for the meta-analysis was calcu-
lated as the standardized mean difference (SMD) with a 
95% confidence interval (95%CI) for outcomes reported 
in non-convertible units or assessed using different rating 
instruments. When all studies employed the same mea-
surement scale for a given outcome, the mean difference 
(MD) with a 95%CI was used instead. Pain intensity scores 
reported on 100-point scales were rescaled to 0–10, and BST 
times were converted from seconds to minutes to ensure 
comparability across studies.

To explore treatment effects within each study, we also 
calculated within-group changes using pre- and post-in-
tervention data (SMDs with 95%CI), where available. In 
addition, we computed between-group differences at post- 
intervention using SMDs based on post-treatment means 
and standard deviations (SDs). These results are presented 
descriptively in ‘Appendix D’, along with indications of sta-
tistical significance, to facilitate interpretation of individual 
study findings.

Unit-of-analysis issues in trials with shared comparison 
groups were addressed by splitting the shared group’s sample 
size evenly, while retaining the original means, SDs, and par-
ticipant counts, in accordance with the Cochrane Handbook 
guidelines (28).

https://www.rayyan.ai
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Synthesis methods

To generalize the findings beyond the included studies, an 
unconditional inference model was employed. The restricted 
maximum likelihood estimation method (REML) was used 
to estimate between-study variance in the random-effects 
model. Post-intervention results were categorized based 
on the duration of the exercise program. ‘Short training 
programs’ (STP) were defined as those with follow-up data 
collected within 6 weeks or less, while ‘extended training 
programs’ (ETP) were defined as those with follow-up data 
collected after at least 7 weeks. This cutoff was based on 
evidence suggesting that programs lasting at least 7 weeks 
may be more effective for managing chronic pain (44). 
Additionally, results were analyzed, where applicable, at 
the final follow-up to assess long-term differences between 
loaded and unloaded interventions. For inclusion in the ‘Post-
Washout’ (PW) follow-up analysis, data had to be collected 
at least 6 months after the study’s initiation, following a 
washout period (i.e., a treatment-free interval to minimize 
carryover effects). When multiple eligible follow-ups were 
reported, data from the most distant follow-up were used. 
Heterogeneity was assessed using Cochran’s Q test (χ²), I² 
statistic, and tau². These metrics were reported descriptively, 
without applying fixed thresholds for interpretation. In addi-
tion, 95% prediction intervals (95%PI) were calculated and 
used as the primary indicator of the expected dispersion 
of true effects across comparable future settings (45,46). 
Meta-analyses were conducted using R version 4.2.3 for Mac 
OS (47), with the ‘meta’ package and its “metagen” func-
tion (48). The complete analysis output (RStudio report) is  
publicly available on the Open Science Framework (OSF) at 
Online.

Post-hoc sub-group and sensitivity analysis

To explore potential sources of heterogeneity in the pri-
mary outcomes, post hoc subgroup analyses were performed 
based on: (i) methodological quality, classified using the RoB2 
tool as high or low risk of bias; (ii) baseline pain intensity, cat-
egorized according to the Pain Monitoring Model (49) as low 
(<2/10), acceptable (2–5/10), or high (>5/10); and (iii) the 
type of resistance used in the intervention, comparing pro-
grams using only external resistance versus those combining 
internal and external resistance. Results of these analyses are 
presented in ‘Appendix F’.

Sensitivity analyses were conducted to assess the robust-
ness of the findings and to examine the influence of individual 
studies on overall estimates and heterogeneity. These analy-
ses were performed only for meta-analyses that included data 
from at least five RCTs, to ensure sufficient statistical power 
and stable estimation of heterogeneity parameters (50). 
Following Viechtbauer (2010), a leave-one-out approach was 
applied, iteratively excluding each study from the model and 
assessing changes in the pooled effect size and heterogeneity 
parameters (I², tau², and Q) (50). A study was considered influ-
ential if its removal resulted in: (a) a substantial reduction in 
heterogeneity (≥25% reduction in tau² or I²), or (b) a meaning-
ful change in the direction or magnitude of the pooled effect. 
Studies meeting one or both of these criteria were excluded in 

subsequent analyses to evaluate whether they had a dispro-
portionate impact on the overall results. This approach allowed 
for a cautious and transparent assessment of the stability of 
the conclusions in the presence of statistical heterogeneity.

Reporting bias assessment

Publication bias was assessed using contour-enhanced 
funnel plots, which illustrate the relationship between the 
size of the studies and effect sizes (51). For meta-analyses 
with at least 10 comparisons (52), Egger’s regression test 
was used as a quantitative measure of reporting bias. The 
“funnel.meta” and “metabias” (47) functions in RStudio (47) 
were used to evaluate the reporting bias.

Results
Registration and Protocol

The review protocol was registered in PROSPERO 
(CRD42022366975), but several amendments were made 
during the review process. Due to the limited number of 
available studies and incomplete reporting of intervention 
data, the planned meta-regression analyses, as specified in 
the original protocol, could not be performed. Consequently, 
modifications were made to both the title and statistical anal-
yses in this manuscript.

Study selection

The search strategy identified a total of 1710 records, of 
which 1609 were retrieved from databases and 101 from 
citation search. After removing 555 duplicates using Rayyan, 
1155 unique records remained. These were screened based 
on titles and abstracts, resulting in the exclusion of 1082 
records for not meeting the inclusion criteria. Overall, 
73  records were identified for retrieval. Of those, one (53) 
could not be retrieved despite attempts to contact the 
authors. The remaining 72 full-texts were screened for eli-
gibility. Among them, 12 studies identified from database 
searches (54-65) and 3 from citation searching (66-68) met 
the eligibility criteria, totaling 15 papers included in the 
review (Fig. 1). However, Michaelson et al. (62) and Mannion 
et al. (68) reported supplementary data from the same par-
ticipant samples described in Aasa et al. (54) and Mannion 
et al. (67), respectively. These reports were therefore inte-
grated into the original studies, resulting in a final count of 13 
unique RCTs included in the meta-analysis.

A total of 57 full-text articles were excluded following 
the eligibility assessment. Four records were excluded as 
they were conference abstracts (69–72). An additional four 
studies were excluded due to the absence of participant 
randomization; three were published studies (73-75), and 
one was an unpublished thesis (Costa K. Effects of a trunk 
strengthening program on pain perception, strength, and 
flexibility in patients with non-specific low back pain. Doctor 
of Physiotherapy thesis, Bond University; 2010. Online. 
Last accessed on 22/09/2025). Four studies were excluded 
because they enrolled participants with specific forms of 
LBP (76-79). Eighteen studies were excluded for failing to 
incorporate external resistance into their exercise protocols 
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(80-97), and nine were excluded because they did not isolate 
resistance training from other concurrent interventions (98-
106). Thirteen studies were excluded for employing either 
passive control conditions or applying resistance training 
to both study groups (107-119). Finally, three studies were 
excluded due to language restrictions (120-122), and two 
were excluded because the outcomes assessed were not rel-
evant to the review question (123-124).

Description of Study Populations

This systematic review included 13 studies published 
between 1999 and 2022 involving a total of 778 subjects with 
chronic NS-LBP. Among them, 395 individuals participated 
in an RT program incorporating external loads. Participants 
in the Resistance Training Group (RTG) had an average age 
of 39.3 years (range: 20.2-61.5 years) and a mean symptom 
duration of 3.96 years (range: 3.9 months to 13 years). The 
Unloaded Exercise Group (UEG) had a similar average age 
of 39.3 years (range: 20.8-57.2 years) and a mean symptom 
duration of 3.21 years (range: 4.1 months to 9.7 years). The 
average height and weight were 168.5 cm (range: 159-183 
cm) and 74.4 kg (range: 61.7-88.4 kg), respectively, in the 
RTG, and 167.5 cm (range: 156-182 cm) and 72.3 kg (range: 
60.3-86.2 kg), respectively, in the UEG. Perceived pain lev-
els during activities averaged 5.4/10 (range: 2.9-8) in the 
RTG and 5.7/10 (range: 2.7-7.4) in the UEG. Gender distri-
bution was reported in 10 of the 13 included RCTs. In RTG, 

198 men (61.9%) and 122 women (38.1%) were enrolled, 
while in UEG, 218 men (64.1%) and 122 women (35.9%) 
were included. Detailed participants’ characteristics are 
presented in Table 1. 

Description of Exercise Interventions

Both RTG and UEG followed equivalent training periods 
and weekly frequencies. Training duration typically lasted 
for eight weeks, ranging from three (64) to sixteen weeks 
(59). Participants trained an average of three sessions per 
week, ranging from one (65) to seven sessions per week (66), 
including both supervised and unsupervised formats. The 
median number of sessions across studies was 12 (interquar-
tile range: 12-16) and was comparable between groups.

Training intensity and Resistance modalities

The RTG program intensity was quantified using vari-
ous metrics. Five studies used an estimated percentage of 
One Repetition Maximum (1RM) (54,55,58,59,66). One 
study employed repetition in reserve (RIR) (57). One study 
used an estimated percentage of maximal voluntary iso-
metric contraction (66). Resistive modalities included: free 
weights (54,57,59,63,66), weight-stack machines (58,59, 
63,65,67), elastic bands (55,56) and isokinetic machines 
(60,61,64). Seven studies used multi-joint exercises (54-
57,59,63,66), while six targeted the lumbopelvic muscles 
(58,60,61,64, 65,67).

FIGURE 1 - Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) flow diagram of study selection.
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Adverse events related to the exercise intervention

Reporting of adverse events was heterogeneous and pre-
dominantly descriptive. Overall, the RTG did not demonstrate a 
higher incidence of events compared with the UEG. Aasa et al. 
(54) and Helmhout et al. (58) each reported one withdrawal 
in the RTG due to symptom aggravation, with no correspond-
ing events in the UEG. In contrast, Mannion et al. reported 
two dropouts in the UEG due to LBP flare-ups, with none in 
the RTG (67). Gibbs et al. observed one transient flare-up in 
each group, which was managed through temporary reduc-
tion of load or repetitions (57). Cai et al. documented three 
musculoskeletal injuries, equally distributed across groups 
and deemed unrelated to the training interventions (66). The 
remaining RCTs did not provide explicit information regard-
ing adverse events associated with the interventions. Taken 
together, adverse events were infrequent, mild in nature, and 
evenly distributed between groups. The number of adverse 
events reported in each group is summarized in Table 1.

Progressive overload strategies

While studies using isokinetic machines (60,61,64) did 
not incorporate progressive overload, all other RT programs 
implemented progressive overload methods. 

Aasa et al. (54), Helmhout et al. (58), and Smith et al. 
(65) increased the load by 2.5 kg or 5% when participants 
exceeded the target repetitions. Cai et al. (66) and Kell et al. 
(59) adjusted load based on planned 10RM reassessments.

Gibbs et al. (57) focused on progressing movement com-
plexity for four weeks before increasing intensity to 1RM in the 
final week. Castro et al. (56) and Calatayud et al. (55) progres-
sively increased elastic resistance every two weeks, starting 
from 20RM and reaching 10RM. Santos et al. (63) applied lin-
ear periodization, gradually increasing intensity while decreas-
ing training volume. Further details on the training programs 
used in the RTG and the UEG are presented in ‘Appendix C’.

Results of individual studies

The results of the individual studies categorized into 
STP, ETP and PW follow-ups, along with the calculated 
within-group improvements, are presented in Appendix D. 
Notably, none of the included studies reported post-inter-
vention scores for kinesiophobia, and only one study (57) 
provided data on pain catastrophizing.

Short Training Program (STP) Follow-up

At the STP follow-up, improvements in pain intensity 
(59,60,61,63), disability (59,63), and muscle endurance (63) 
were generally greater in the RTG than in the UEG. Most 
studies reported within-group improvements in pain and 
disability, though gains in muscle endurance and strength 
were smaller. One UE program (63) demonstrated a signif-
icant improvement in VAS scores despite a slight decline in 
BST performance.

Extended Training Program (ETP) Follow-up

At the ETP follow-up, pain intensity (66,59,65) and disabil-
ity (54,55,57-59) improved more in the RTG, whereas muscle 

endurance and strength showed similar changes in both 
groups. Calatayud et al. (55) reported a mean BST perfor-
mance change of 44.39 seconds, although pain and disabil-
ity improvements were only a minimal clinically important 
difference (MCID) (125). Gibbs et al. (57) found reductions 
in pain catastrophizing on the PCS (0-52) in both groups at 
post-intervention. RTG improved from 16.0± 10.3 to 8.5 ± 
9.6. UEG improved from 18.0 ± 11.7 to 8.9 ± 8.5.

Post-Washout (PW) Follow-up

At the PW follow-ups, primary outcomes generally con-
tinued to improve. Aasa et al. (54) reported a slight wors-
ening in pain intensity and disability, but muscle endurance 
and strength improved. Helmhout et al. (58) found that the 
UEG experienced a slight decline in maximal strength, with 
no change in disability at 8 and 14 months. Regarding PCS 
scores, Gibbs et al. (57) reported a slight increase in pain cat-
astrophizing in both groups: RTG from 8.5 ± 9.6 to 9.8 ± 10.1. 
UEG from 8.9 ± 8.5 to 10.8 ± 10.5.

Between-Group Comparisons

Seven studies (54-58,64,66) found no significant differences 
between RTG and UEG after treatment. Five studies (59,60, 
63-65) concluded that RT led to superior outcomes. Conversely, 
Nambi et al. (61) reported that UE was superior to RT.

Risk of bias in studies

The detailed ROB2 assessment is provided in Appendix E, 
including a summary and traffic light plots for each outcome. 
None of the ROB2 domains were rated as having a high risk 
of bias. However, five RCTs (58-60,65,66) were judged to have 
a high overall risk of bias due to the cumulative impact of 
multiple domains rated as “Some Concerns.” 

Primary outcomes meta-analyses

Data on pain intensity were reported in 12 RCTs, while 
data on disability were available from 10 RCTs. One study 
(56) was excluded from the quantitative synthesis due to the 
unavailability of summary statistics, despite attempts to con-
tact the authors.

Pain intensity

At the STP follow-up (6 RCTs, n = 282), the MD was -0.48/10 
(95%CI: [-1.15, 0.18]; p = 0.15), indicating no clear average 
between-group difference. The 95%PI (-3.25 to 2.44) suggests 
a wide range of possible effects, including the possibility of 
both meaningful pain reduction and no benefit. Heterogeneity 
statistics were I² = 97% and tau² = 1.02 (Fig. 2 – Forest Plot 1a).  
At ETP follow-up (7 RCTs, n = 474), the pooled MD was 
−0.52/10 (95%CI: [−0.92, −0.08]; p = 0.022), suggesting a small 
average reduction in pain favoring RTG. The 95%PI (–1.88-
0.83) includes the null, indicating that future studies may still 
find no effect in some settings. Heterogeneity statistics were 
I² = 67% and tau² = 0.28 (Fig. 2 – Forest Plot 1b). At PW fol-
low-up (5 RCTs, n = 345), the pooled MD was −0.36/10 (95%CI: 
[−1.18, 0.47]; p = 0.40), again showing no clear average differ-
ence. The 95%PI (–3.25-2.54) indicates a broad distribution of 
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possible effects across studies, consistent with the variability 
captured by I² = 97% and tau² = 1.09 (Fig. 2 – Forest Plot 1c).

Disability

At STP follow-up (3 RCTs, n = 206), the pooled SMD was 
−2.04 (95%CI: [−3.92, −0.16]; p = 0.033), suggesting a large 
average reduction in disability favoring the RTG. The 95%PI 
(−4.43-0.35) indicates that future studies could observe 
effects ranging from very large improvements favoring the 
RTG to moderate effects favoring the UEG. Heterogeneity sta-
tistics were I² = 93% and tau² = 4.18 (Fig. 2 – Forest Plot 2a). 
At the ETP follow-up (7 RCTs, n = 505), the pooled SMD was 
–0.40 (95%CI: [-1.00, 0.20]; p = 0.19), indicating that the aver-
age improvement in disability was similar between groups. 

The 95%PI (–1.68-0.88) suggests that future studies may 
find results ranging from large improvements favoring either 
the RTG or the UEG. Heterogeneity statistics were I² = 82% 
and tau² = 0.63 (Fig. 2 – Forest Plot 2b). At the PW follow-up  
(4 RCTs, n = 331), the pooled SMD was 0.06 (95%CI: [−0.16, 
0.28]; p = 0.59), suggesting that the degree of improvement in 
disability was comparable between groups. The 95%PI (–0.43 
to 0.55) indicates that future studies are likely to observe 
small to moderate effects in either direction. Heterogeneity 
statistics were I² = 0% and tau² = 0 (Fig. 2 – Forest Plot 2c).

Post hoc Subgroup Analyses

Subgroup effects were observed only in the STP 
meta-analysis for disability, where greater treatment effects 

FIGURE 2 - Primary Outcomes Forest Plots: Effects of Loaded and Unloaded Exercise on Pain and Disability .
ROB2: Risk of Bias Tool 2; CI: Confidence Interval; PI: Prediction Interval; LL: Lower Limit; UL: Upper Limit; IV: Inverse Variance; W: Weight; 
MD: Mean Difference; SMD: Standardized Mean Difference; VAS: Visual Analog Scale; ODI: Oswestry Disability Index; RMDQ: Roland and 
Morris Disability Questionnaire; RTG: Resistance Training Group; UEG: Unloaded Exercise group
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were found among participants with high baseline pain  
(Q = 59.55; df = 2; p < 0.0001), and in interventions com-
bining internal and external resistance (Q = 49.02; df = 1; p 
< 0.0001). Full subgroup results are reported in Appendix F.

Sensitivity analyses were performed only for pain STP, 
ETP and PW follow-ups and the disability ETP follow-up, as 
these were the only meta-analyses including data from more 
than five RCTs. In the pain STP analysis, the studies by Nambi 
et al. (60,61) were identified as influential, as their exclu-
sion resulted in a statistically significant pooled effect (MD = 
−0.53/10; 95%CI: [−1.06, −0.05]; p = 0.0478) and a marked 
reduction in heterogeneity statistics (I² = 58%, tau² = 0.24). At 
the PW follow-up, Nambi et al. (61) were again identified as 
influential due to the reduction of the I² and tau² statistics to 
zero and the emergence of a significant pooled effect (MD = 
−0.31/10; 95%CI: [−0.55, −0.07]; p = 0.01). The study by Kell et 
al. (59) was influential in both the ETP pain and disability anal-
ysis. In the pain ETP analysis, its exclusion reduced tau² from 
0.276 to 0.091 and I² from 67.3% to 37.8%, and the pooled 
effect became non-significant (MD = −0.33/10; 95% CI: [−0.69, 
0.02]; p = 0.687). In the disability ETP follow-up, tau² dropped 
from 0.634 to 0.081 and I² from 82.1% to 68.9%, although the 
effect direction and significance remained unchanged (SMD = 
−0.169; 95%CI: [−0.44, 0.10]; p = 0.223). These findings sug-
gest that the identified trials contributed disproportionately 
to between-study heterogeneity and, in some cases, to the 
statistical significance of the pooled effects.

Secondary outcomes meta-analyses

Although meta-analyses were planned for all secondary 
outcomes, pooling for the PCS was not feasible, as data were 
available from only one study (57). Consequently, quantitative 
syntheses were conducted only for back muscle endurance  
(4 RCTs), maximal strength (3 RCTs), and FABQ-PA (2 RCTs).

Back Muscle Endurance

At STP follow-up (2 RCTs, n = 56), the pooled MD was 
0.50 minutes (95%CI: [0.26,  0.74]; p  <  0.001), indicating a 
statistically significant improvement in the performance of 
the BST, favoring the RTG. The 95%PI (–1.80 to 2.80) sug-
gests that future studies could observe large effects favor-
ing either treatment. Heterogeneity statistics were I² = 38% 
and tau² = 0.018 (Fig. 3 – Forest Plot 3a). At ETP follow-up 
(3 RCTs, n = 173), the pooled MD was 0.47 minutes (95%CI: 
[0.09,  0.85]; p  =  0.015), again indicating a statistically sig-
nificant improvement in the BST performance favoring the 
RTG. The very wide 95%PI (–3.80 to 4.73) reflects the consid-
erable uncertainty about the generalizability of the pooled 
effect. Heterogeneity statistics were I² = 69% and tau² = 0.075 
(Fig. 3 – Forest Plot 3b). At PW follow-up, Aasa et al. (54) also 
reported a significant effect on the BST favoring the RTG  
(MD = 0.35 minutes; 95%CI: [0.03, 0.67]).

Maximal strength

At STP follow-up (2 RCTs, n = 150), the pooled SMD was 0.00 
(95%CI: [–0.30, 0.30]; p = 0.998), indicating that the average 
change in maximal strength was similar between the RTG and 

UEG. The 95%PI (–1.96-1.96) suggests that future studies may 
observe large effects on maximal strength, favoring either the 
RTG or the UEG. Heterogeneity statistics were I² = 0% and tau² = 
0 (Fig. 3 – Forest Plot 4a). At the ETP follow-up (2 RCTs, n = 176), 
the pooled SMD was 0.22 (95%CI: [–0.70, 0.26]; p = 0.38), again 
suggesting that average changes were comparable between 
RTG and UEG. Heterogeneity statistics were I² = 20% and tau² 
= 0.033 (Fig. 3 – Forest Plot 4b). At PW follow-up (2 RCTs, n = 
176), the pooled SMD was 0.40 (95%CI: [0.08, 0.71]; p = 0.013), 
suggesting a moderate and statistically significant effect favor-
ing the RTG. Heterogeneity statistics were I² = 0% and tau² = 0.0 
(Fig. 3 – Forest Plot 4c). The 95%PI was not calculated for ETP 
and PW due to the limited number of comparisons included.

Fear-avoidance beliefs related to physical activity

At ETP follow-up (2 RCTs, 2 comparisons), the pooled MD 
was –0.09/24 (95%CI: [–0.88, 0.71]; p = 0.82), indicating that 
average FABQ-PA scores were similar between RTG and UEG. 
Heterogeneity statistics were I² = 0% and tau² = 0 (Fig. 3 – 
Forest Plot 5a).

At PW follow-up (2 RCTs, 2 comparisons), the pooled MD 
was –0.24/24 (95%CI: [–1.58, 1.09]; p = 0.72), again suggest-
ing no clear difference in FABQ-PA scores between groups. 
Heterogeneity statistics were I² = 0% and tau² = 0 (Fig. 3 – 
Forest Plot 5b). The 95%PI could not be estimated at either fol-
low-up due to the restricted number of comparisons available.

Reporting biases

Reporting bias was assessed using funnel plots (Appendix G). 
The plots showed no significant signs of bias (126). Due to the 
limited number of comparisons, Egger’s test was applied only to 
the STP meta-analysis for pain, yielding an intercept of 0.20 (t = 
−0.57, p = 0.58), suggesting no funnel plot asymmetry.

Quality of the evidence (GRADE Assessment)

The overall certainty of the evidence for primary out-
comes was rated as ‘very low’, due to methodological lim-
itations and inconsistency across studies. For back muscle 
endurance, certainty was rated “moderate” at both STP and 
ETP follow-ups, suggesting probable benefits of externally 
loaded resistance training over unloaded interventions. At 
the PW follow-up, the certainty decreased to “very low” due 
to the limited number of trials and imprecision. For maximal 
strength, the certainty was consistently rated “low” across 
all follow-ups, primarily due to the small number of included 
studies and risk of bias. For fear-avoidance beliefs related to 
physical activity, the evidence was judged as “low” certainty 
at both ETP and PW timepoints, reflecting imprecision and 
methodological concerns. For pain catastrophizing, certainty 
was rated as “very low” at both time points, as only one study 
provided data, limiting confidence in the estimate. A detailed 
evidence quality assessment is provided in Appendix H.

Discussion
Main findings

This systematic review evaluated current evidence on the 
effectiveness of RT interventions involving external loads in 
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the management of chronic NS-LBP. Thirteen studies were 
included, comprising 395 participants enrolled in exercise 
programs utilizing various external load modalities such as 
free weights, elastic bands, weight stack machines, and isoki-
netic devices.

Across studies, both RTG and UEG were associated with 
reductions in pain intensity and disability, but between-
group differences were generally modest and inconsistent 
across follow-ups. At ETP follow-up, the RTG showed a small 
but statistically significant advantage over the UEG in improv-
ing pain intensity (MD = –0.52/10; 95%CI: [–0.92, –0.08]). 
However, the magnitude of this effect did not exceed the 
MCID (125), questioning its clinical relevance. For disabil-
ity, only the STP meta-analysis indicated superiority of the 
RTG (SMD = −2.04; 95%CI: [−3.92, −0.16]), though this esti-
mate was accompanied by very high inconsistency and was 
strongly influenced by small-sample trials. Importantly, the 
95% PI for both outcomes was wide at every follow-up, sug-
gesting that in future comparable settings, true effects may 
range from clinically meaningful benefit to no added value 
of external load. Taken together, these findings indicate that 
even when significant, the average between-group differ-
ences remain small, and the variability across contexts makes 
strong generalizations premature. 

For secondary outcomes, signals in favor of RTG were 
observed for physical performance measures, although these 
results should be interpreted cautiously. Back muscle endur-
ance improved more consistently with RTG, with significant 
effects reported at both STP (MD = 0.50 min; 95%CI: [0.26, 
0.74]) and ETP (MD = 0.47 min; 95%CI: [0.09, 0.85]). 

The very wide 95%PI calculated for these analyses largely 
reflects the small number of contributing RCTs. At PW, one 
trial (54) showed maintenance of these benefits (MD = 0.35 
min; 95%CI: [0.03, 0.67]) one year after baseline. For max-
imal strength, the effects of RT became significant only at 
PW follow-up (SMD = 0.40; 95%CI: [0.08, 0.71]), potentially 

reflecting a delayed recovery of physical capacity consistent 
with the Fitness-Fatigue model (127). Yet, for both ETP and 
PW follow-ups, 95%PI could not be calculated due to the lim-
ited number of comparisons. 

In contrast, psychosocial variables were rarely reported. 
Two RCTs assessed the FABQ-PA (57,67) and only one the PCS 
(57), without showing any clear between-group difference. 
The underreporting of psychosocial outcomes likely reflects 
the historical dominance of biomechanical perspectives in 
LBP research (5,6). This narrow emphasis limits our ability 
to determine to what extent training variables, such as load, 
exert effects beyond neuromuscular adaptations. 

Interpretations and Clinical Implications

This meta-analysis examined whether adding external 
load to RT could enhance the effectiveness of exercise-based 
treatment for chronic NS-LBP, compared to unloaded 
approaches. While our findings suggest that external loads 
may promote measurable neuromuscular adaptations, these 
benefits do not consistently translate into superior outcomes 
in pain or disability, nor into clear advantages on psychosocial 
variables such as fear-avoidance or catastrophizing. 

This dissociation reinforces the notion that improvements 
in physical capacity alone are not sufficient, on their own, 
to drive meaningful change in chronic NS-LBP—a condition 
shaped by complex and interacting biological, psychologi-
cal, and social processes (5,6). The modest and inconsistent 
effects observed here are in line with accumulating evi-
dence that challenges the assumption of a linear relationship 
between biomechanical gain and symptom relief (24,128).

Rather than being determined by tissue status or physi-
cal capacity, changes in pain and disability may often reflect 
modifications in pain-related beliefs, behaviors, and emo-
tional responses (129). Although external load may serve 
as a means of graded exposure or a catalyst for behavioral 

FIGURE 3 - Secondary Outcomes Forest Plots: Effects of Loaded and Unloaded Exercise on Muscle Endurance, Maximal Strength and Fear-
Avoidance Beliefs related to Physical Activity.
ROB2: Risk of Bias Tool 2; CI: Confidence Interval; PI: Prediction Interval; LL: Lower Limit; UL: Upper Limit; IV: Inverse Variance; W: Weight; 
MD: Mean Difference; SMD: Standardized Mean Difference; BST: Biering-Sørensen Test; MIBE: Maximal Isometric Back Extension; PT: Peak 
Torque; n: newton; nm: newton meters; RTG: Resistance Training Group; UEG: Unloaded Exercise group.
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re-signification (130,131), current data suggest that its effec-
tiveness is not inherently superior. Simply increasing load, 
without integrating a therapeutic narrative, may be insuffi-
cient to influence the multidimensional experience of pain 
(132,133). It is probable that its effectiveness depends on 
being embedded within a broader psychological or contex-
tual framework.

From a clinical perspective, this implies that the value 
of load should be seen less as a mechanical input, but 
as a potential behavioral signal—the meaning of which 
depends on patient interpretation, context, and clinical 
communication (133). In this sense, the delivery and con-
textual framing of exercise may be more impactful than its  
intensity or volume.

Given the current heterogeneity in exercise protocols 
and outcomes, and the limited added value associated with 
higher intensities, we believe that providing specific dosage 
prescriptions (e.g., frequency, sets, repetitions) falls beyond 
the scope of this meta-analysis. However, our subgroup 
analyses also suggest that exposure consistency and vol-
ume, rather than training intensity, may play a more central 
role in symptom modulation (134). This supports growing 
interest in low-intensity, high-frequency strategies, such 
as “exercise snacks,” which may provide similar benefits 
while enhancing adherence, reducing perceived threat, and 
improving safety (135). 

Ultimately, load can be a useful tool—but not a univer-
sally necessary one. Its clinical relevance depends on how it 
is integrated into a person-centred, biopsychosocial frame-
work that acknowledges not only tissue adaptation, but also 
individual experience, meaning, and the therapeutic alliance. 

Study limitations

While interpreting the findings of this review, several lim-
itations should be considered. 

The search and selection strategy introduced some lim-
itations. Restricting eligibility to studies published in English 
and Italian may have introduced language bias, potentially 
excluding relevant evidence in other languages. The use of 
an RCT filter increased the specificity of the search but may 
also have reduced its sensitivity, with the risk of omitting rel-
evant trials. Notably, no eligible studies published between 
2022 and March 2025 were identified. However, similar or 
even longer publication gaps had occurred in earlier peri-
ods, suggesting that this pattern was more likely related to 
the specificity of the inclusion criteria. In addition, although 
independent screening was conducted by two reviewers, 
inter-rater agreement was not formally calculated, which is 
acknowledged as a methodological limitation of the study 
selection process.

The characteristics of the included populations also limit 
the generalizability of the findings. The age range of included 
participants (20.2 to 52 years) limits the applicability of these 
results to younger and older individuals with chronic NS-LBP. 
In addition, sex distribution was imbalanced, with men com-
prising the majority of participants (62–64% across groups). 
This imbalance may in part reflect the specific populations 
investigated in certain trials rather than systematic recruit-
ment bias: for instance, Helmhout et al. (58) enrolled military 

personnel, and Nambi et al. (60,61) studied male soccer 
players—both predominantly male populations. While this 
contextualizes the skewed sex distribution, it nonetheless 
constrains the transferability of our findings, particularly to 
women with chronic NS-LBP.

Considerable clinical and methodological heterogeneity 
was observed across studies, particularly in terms of exercise 
type, loading modalities, intensity, progression strategies, and 
baseline symptom severity. This variability, together with the 
lack of standardized intervention protocols, may have influ-
enced treatment effects and contributed to statistical inconsis-
tency. In addition, although available data suggest a favorable 
safety profile for externally loaded RT, with event rates compa-
rable to unloaded exercise and mostly mild, transient adverse 
events, harm reporting was inconsistent and largely descrip-
tive, preventing reliable estimation of event incidence.

Additionally, psychosocial variables such as fear-avoidance, 
catastrophizing, and kinesiophobia were rarely reported, lim-
iting insights into the cognitive-affective impact of externally 
loaded exercise. Lastly, subgroup and sensitivity analyses 
were conducted post hoc and were not based on predefined 
hypotheses; thus, their findings should be interpreted with 
caution. Finally, some deviations from the original protocol, 
including the omission of planned meta-regression analyses 
due to insufficient data, limited the possibility of exploring 
potential dose–response relationships.

Implications for future research
To better support person-centered care, future research 

should investigate how RT variables interact not only with 
physical adaptations but also with psychological and behav-
ioral responses. It remains unclear whether higher training 
loads confer meaningful benefits beyond strength gains, 
particularly when not embedded within a therapeutic nar-
rative that addresses pain-related fear or perceptions of 
fragility. Similarly, increased exercise variety or task com-
plexity may act as a form of graded exposure, helping to 
reshape pain-related beliefs and improve self-efficacy, rather 
than solely enhancing motor control. Total RT volume— 
including frequency, intensity, and duration—should be 
examined in relation to adherence, perceived safety, and 
emotional responses, not merely physiological outcomes. 
Future trials should incorporate validated psychosocial vari-
ables to clarify how exercise influences the full spectrum of 
pain experience and whether individualized interventions 
can optimize outcomes through mechanisms beyond tis-
sue-level adaptations.

Conclusion
This review highlights that both loaded and unloaded 

resistance training can lead to reductions in pain and dis-
ability among individuals with chronic NS-LBP, although the 
magnitude and consistency of these effects remain mod-
est. Notably, symptom improvement does not appear to be 
solely dependent on load intensity. While high-load RT (85-
100% 1RM) may be safe and effective when appropriately 
progressed—even in individuals with elevated pain levels—
clinical outcomes likely depend more on how exercise is 
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structured, delivered, and interpreted than on mechanical 
intensity alone. Variables such as total training volume, con-
sistency of exposure, and therapeutic framing may play a 
more substantial role in driving meaningful improvements. 
From a biopsychosocial perspective, exercise should not be 
prescribed merely to restore physical capacity, but also as 
a behavioral intervention aimed at challenging maladaptive 
beliefs, reducing fear, and fostering movement confidence. 
Accordingly, exercise programs should be individualized, pro-
gressive, and tailored to the patients’ needs. Clinicians may 
consider incorporating both internal and external resistance, 
along with multi-joint exercises and adequate variation, in 
order to promote neuromuscular adaptation, enhance psy-
chological engagement, and support long-term adherence. 
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