Discriminative ability, responsiveness, and interpretability of smoothness index of gait in people with multiple sclerosis
DOI:
https://doi.org/10.33393/aop.2025.3289Keywords:
IMUs, Sensor, Multiple sclerosis, Responsiveness, Smoothness, GaitAbstract
Introduction: Gait impairments are common in People with Multiple Sclerosis (PwMS). Several studies have examined the clinometric properties of Inertial Measurement Units (IMUs), with LDLJa identified as a robust metric for gait smoothness. However, its responsiveness and interpretability have not been explored.
Methods: This cross-sectional study at IRCCS Santa Lucia Hospital enrolled 44 PwMS (age: 28-71; EDSS: 0-6) and 43 age- and gait-speed-matched healthy participants (HP). Two physiotherapists conducted assessments with five synchronized IMUs during a 10-meter walk at participants’ preferred speed. Data were collected at baseline (T0) and after 4 weeks of training (T1).
Results: Significant differences in log dimensionless jerk (LDLJa) were found between PwMS and HP in the AP (p < 0.001, d = 0.63), ML (p < 0.001, d = 1.08), and CC (p = 0.03, d = 0.68) directions. PwMS had lower LDLJaAP values (< -4.88) and LDLJaML values (< -5.40) with probabilities of 63% and 76%, respectively. ΔLDLJaML demonstrated good responsiveness to rehabilitation (AUC ~0.80), with improvements >4.02% representing the optimal MCID for clinical improvement in MiniBesTest.
Conclusion: Lower LDLJa values in the AP and ML directions characterize gait smoothness impairment in PwMS. LDLJa in the ML direction is responsive to balance-focused rehabilitation, highlighting its potential for tracking gait disorders and rehabilitation progress.
Downloads
References
- Comber L, Galvin R, Coote S. Gait deficits in people with multiple sclerosis: A systematic review and meta-analysis. Gait Posture. 2017;51:25-35. PMID:27693958 DOI: https://doi.org/10.1016/j.gaitpost.2016.09.026 PMID:27693958 DOI: https://doi.org/10.1016/j.gaitpost.2016.09.026
- Gunn H, Creanor S, Haas B, Marsden J, Freeman J. Risk factors for falls in multiple sclerosis: an observational study. Mult Scler. 2013;19(14):1913-1922. PMID:23633067 DOI: https://doi.org/10.1177/1352458513488233 PMID:23633067 DOI: https://doi.org/10.1177/1352458513488233
- Galperin I, Mirelman A, Schmitz-Hübsch T, et al. Treadmill training with virtual reality to enhance gait and cognitive function among people with multiple sclerosis: a randomized controlled trial. J Neurol. 2023;270(3):1388-1401. PMID:36357586 DOI: https://doi.org/10.1007/s00415-022-11469-1 PMID:36357586 DOI: https://doi.org/10.1007/s00415-022-11469-1
- Corrini C, Gervasoni E, Perini G, et al. Mobility and balance rehabilitation in multiple sclerosis: A systematic review and dose-response meta-analysis. Mult Scler Relat Disord. 2023;69:104424. DOI: https://doi.org/10.1016/j.msard.2022.104424 PMID:36473240 DOI: https://doi.org/10.1016/j.msard.2022.104424
- Gordt K, Gerhardy T, Najafi B, Schwenk M. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gerontology. 2018;64(1):74-89. DOI: https://doi.org/10.1159/000481454 PMID:29130977 DOI: https://doi.org/10.1159/000481454
- Trabassi D, Castiglia SF, Bini F, et al. Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia. Sensors (Basel). 2024;24(11):3613. DOI: https://doi.org/10.3390/s24113613 DOI: https://doi.org/10.3390/s24113613
- Belluscio V, Bergamini E, Tramontano M, et al. Gait Quality Assessment in Survivors from Severe Traumatic Brain Injury: An Instrumented Approach Based on Inertial Sensors. Sensors (Basel). 2019;19(23):5315. DOI: https://doi.org/10.3390/s19235315 PMID:31816843 DOI: https://doi.org/10.3390/s19235315
- Tramontano M, Orejel Bustos AS, Montemurro R, et al. Dynamic Stability, Symmetry, and Smoothness of Gait in People with Neurological Health Conditions. Sensors (Basel). 2024;24(8):2451. DOI: https://doi.org/10.3390/s24082451 PMID:38676068 DOI: https://doi.org/10.3390/s24082451
- Buckley C, Galna B, Rochester L, Mazzà C. Upper body accelerations as a biomarker of gait impairment in the early stages of Parkinson’s disease. Gait Posture. 2019;71:289-295. DOI: https://doi.org/10.1016/j.gaitpost.2018.06.166 PMID:30139646 DOI: https://doi.org/10.1016/j.gaitpost.2018.06.166
- Castiglia SF, Trabassi D, Tatarelli A, et al. Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. Cerebellum. 2023;22(1):46-58. DOI: https://doi.org/10.1007/s12311-021-01361-5 PMID:35079958 DOI: https://doi.org/10.1007/s12311-021-01361-5
- Castiglia SF, Tatarelli A, Trabassi D, et al. Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson's Disease. Sensors (Basel). 2021;21(10):3449. DOI: https://doi.org/10.3390/s21103449 DOI: https://doi.org/10.3390/s21103449
- Tramontano M, Manzari L, Bustos ASO, et al. Instrumental assessment of dynamic postural stability in patients with unilateral vestibular hypofunction during straight, curved, and blindfolded gait. Eur Arch Otorhinolaryngol. 2024;281(1):83-94. DOI: https://doi.org/10.1007/s00405-023-08082-x PMID:37382626 DOI: https://doi.org/10.1007/s00405-023-08082-x
- Spain RI, St George RJ, Salarian A, et al. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture. 2012;35(4):573-578. DOI: https://doi.org/10.1016/j.gaitpost.2011.11.026 PMID:22277368 DOI: https://doi.org/10.1016/j.gaitpost.2011.11.026
- Angelini L, Carpinella I, Cattaneo D, et al. Is a Wearable Sensor-Based Characterisation of Gait Robust Enough to Overcome Differences Between Measurement Protocols? A Multi-Centric Pragmatic Study in Patients with Multiple Sclerosis. Sensors (Basel). 2019;20(1):79. DOI: https://doi.org/10.3390/s20010079 DOI: https://doi.org/10.3390/s20010079
- Melendez-Calderon A, Shirota C, Balasubramanian S. Estimating Movement Smoothness From Inertial Measurement Units. Front Bioeng Biotechnol. 2021;8:558771. DOI: https://doi.org/10.3389/fbioe.2020.558771 DOI: https://doi.org/10.3389/fbioe.2020.558771
- Pau M, Mandaresu S, Pilloni G, et al. Smoothness of gait detects early alterations of walking in persons with multiple sclerosis without disability. Gait Posture. 2017;58:307-309. DOI: https://doi.org/10.1016/j.gaitpost.2017.08.023 PMID:28858779 DOI: https://doi.org/10.1016/j.gaitpost.2017.08.023
- Tramontano M, Belluscio V, Bergamini E, et al. Vestibular Rehabilitation Improves Gait Quality and Activities of Daily Living in People with Severe Traumatic Brain Injury: A Randomized Clinical Trial. Sensors (Basel). 2022;22(21):8553. DOI: https://doi.org/10.3390/s22218553 DOI: https://doi.org/10.3390/s22218553
- Germanotta M, Iacovelli C, Aprile I. Evaluation of Gait Smoothness in Patients with Stroke Undergoing Rehabilitation: Comparison between Two Metrics. Int J Environ Res Public Health. 2022;19(20):13440. DOI: https://doi.org/10.3390/ijerph192013440 DOI: https://doi.org/10.3390/ijerph192013440
- Miller HL, Templin TN, Fears NE, Sherrod GM, Patterson RM, Bugnariu NL. Movement smoothness during dynamic postural control to a static target differs between autistic and neurotypical children. Gait Posture. 2023;99:76-82. DOI: https://doi.org/10.1016/j.gaitpost.2022.10.015 PMID:36335658 DOI: https://doi.org/10.1016/j.gaitpost.2022.10.015
- Dixon PC, Stirling L, Xu X, Chang CC, Dennerlein JT, Schiffman JM. Aging may negatively impact movement smoothness during stair negotiation. Hum Mov Sci. 2018;60:78-86. DOI: https://doi.org/10.1016/j.humov.2018.05.008 PMID:29843055 DOI: https://doi.org/10.1016/j.humov.2018.05.008
- Suri A, Rosso AL, VanSwearingen J, et al. Mobility of Older Adults: Gait Quality Measures Are Associated With Life-Space Assessment Scores. J Gerontol A Biol Sci Med Sci. 2021;76(10):e299-e306. DOI: https://doi.org/10.1093/gerona/glab151 PMID:34038537 DOI: https://doi.org/10.1093/gerona/glab151
- Garcia FDV, da Cunha MJ, Schuch CP, Schifino GP, Balbinot G, Pagnussat AS. Movement smoothness in chronic post-stroke individuals walking in an outdoor environment - A cross-sectional study using IMU sensors. PLoS One. 2021;16(4):e0250100. DOI: 10.1371/journal.pone.0250100 PMID: 33886640 DOI: https://doi.org/10.1371/journal.pone.0250100
- Tramontano M, Argento O, Orejel Bustos AS, et al. Cognitive-motor dual-task training improves dynamic stability during straight and curved gait in patients with multiple sclerosis: a randomized controlled trial. Eur J Phys Rehabil Med. 2024;60(1):27-36. DOI: https://doi.org/10.23736/S1973-9087.23.08156-X PMID:37997324 DOI: https://doi.org/10.23736/S1973-9087.23.08156-X
- Antonelli M, Caselli E, Gastaldi L. Comparison of Gait Smoothness Metrics in Healthy Elderly and Young People. Appl Sci (Basel). 2024;14(2):911. https://doi.org/10.3390/app14020911 DOI: https://doi.org/10.3390/app14020911
- Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness: a critical review and recommendations. J Clin Epidemiol. 2000;53(5):459-468. DOI: https://doi.org/10.1016/S0895-4356(99)00206-1 PMID:10812317 DOI: https://doi.org/10.1016/S0895-4356(99)00206-1
- Crosby RD, Kolotkin RL, Williams GR. Defining clinically meaningful change in health-related quality of life. J Clin Epidemiol. 2003;56(5):395-407. DOI: https://doi.org/10.1016/S0895-4356(03)00044-1 PMID:12812812 DOI: https://doi.org/10.1016/S0895-4356(03)00044-1
- Baert I, Freeman J, Smedal T, et al. Responsiveness and clinically meaningful improvement, according to disability level, of five walking measures after rehabilitation in multiple sclerosis: a European multicenter study. Neurorehabil Neural Repair. 2014;28(7):621-631. DOI: https://doi.org/10.1177/1545968314521010 PMID:24503204 DOI: https://doi.org/10.1177/1545968314521010
- Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-1452. DOI: https://doi.org/10.1212/WNL.33.11.1444 PMID:6685237 DOI: https://doi.org/10.1212/WNL.33.11.1444
- Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. J Rehabil Med. 2010;42(4):323-331. DOI: https://doi.org/10.2340/16501977-0537 PMID:20461334 DOI: https://doi.org/10.2340/16501977-0537
- Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. Comparison of reliability, validity, and responsiveness of the mini-BESTest and Berg Balance Scale in patients with balance disorders. Phys Ther. 2013;93(2):158-167. DOI: https://doi.org/10.2522/ptj.20120171 PMID:23023812 DOI: https://doi.org/10.2522/ptj.20120171
- Yao XI, Wang X, Speicher PJ, et al. Reporting and Guidelines in Propensity Score Analysis: A Systematic Review of Cancer and Cancer Surgical Studies. J Natl Cancer Inst. 2017;109(8):djw323. DOI: https://doi.org/10.1093/jnci/djw323 PMID:28376195 DOI: https://doi.org/10.1093/jnci/djw323
- Huijben B, van Schooten KS, van Dieën JH, Pijnappels M. The effect of walking speed on quality of gait in older adults. Gait Posture. 2018;65:112-116. DOI: https://doi.org/10.1016/j.gaitpost.2018.07.004 PMID:30558916 DOI: https://doi.org/10.1016/j.gaitpost.2018.07.004
- Lowry KA, Vanswearingen JM, Perera S, Studenski SA, Brach JS. Walking smoothness is associated with self-reported function after accounting for gait speed. J Gerontol A Biol Sci Med Sci. 2013;68(10):1286-1290. DOI: https://doi.org/10.1093/gerona/glt034 PMID:23689828 DOI: https://doi.org/10.1093/gerona/glt034
- Trojaniello D, Cereatti A, Pelosin E, et al. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. J Neuroeng Rehabil. 2014;11:152. DOI: https://doi.org/10.1186/1743-0003-11-152 DOI: https://doi.org/10.1186/1743-0003-11-152
- Bergamini E, Ligorio G, Summa A, Vannozzi G, Cappozzo A, Sabatini AM. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks. Sensors (Basel). 2014;14(10):18625-18649. DOI: https://doi.org/10.3390/s141018625 DOI: https://doi.org/10.3390/s141018625
- Jiang D, Huang J, Zhang Y. The cross-validated AUC for MCP-logistic regression with high-dimensional data. Stat Methods Med Res. 2013;22(5):505-518. DOI: https://doi.org/10.1177/0962280211428385 PMID:22127580 DOI: https://doi.org/10.1177/0962280211428385
- Eertink JJ, Heymans MW, Zwezerijnen GJC, Zijlstra JM, de Vet HCW, Boellaard R. External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients. EJNMMI Res. 2022;12(1):58. DOI: https://doi.org/10.1186/s13550-022-00931-w DOI: https://doi.org/10.1186/s13550-022-00931-w
- Szeghalmy S, Fazekas A. A Comparative Study of the Use of Stratified Cross-Validation and Distribution-Balanced Stratified Cross-Validation in Imbalanced Learning. Sensors (Basel). 2023;23(4):2333.DOI: https://doi.org/10.3390/s23042333 DOI: https://doi.org/10.3390/s23042333
- Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection; Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95); Montreal, QC, Canada. 20–25 August 1995; pp. 1137-1145. https://dl.acm.org/doi/10.5555/1643031.1643047
- Forman G, Scholz M. Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. SIGKDD Explor. 2010;12(1):49-57. DOI: https://doi.org/10.1145/1882471.1882479 DOI: https://doi.org/10.1145/1882471.1882479
- Morrison S, Rynders CA, Sosnoff JJ. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis. Gait Posture. 2016;49:148-154. DOI: https://doi.org/10.1016/j.gaitpost.2016.06.036 PMID:27423077 DOI: https://doi.org/10.1016/j.gaitpost.2016.06.036
- Comber L, Sosnoff JJ, Galvin R, Coote S. Postural control deficits in people with Multiple Sclerosis: A systematic review and meta-analysis. Gait Posture. 2018;61:445-452. DOI: https://doi.org/10.1016/j.gaitpost.2018.02.018 PMID:29486362 DOI: https://doi.org/10.1016/j.gaitpost.2018.02.018
- Lencioni T, Anastasi D, Carpinella I, et al. Strategies for maintaining dynamic balance in persons with neurological disorders during overground walking. Proc Inst Mech Eng H. 2021;235(9):1079-1087. DOI: https://doi.org/10.1177/09544119211023624 PMID:34112028 DOI: https://doi.org/10.1177/09544119211023624
- Gulde P, Hermsdörfer J, Rieckmann P. Speed but Not Smoothness of Gait Reacts to Rehabilitation in Multiple Sclerosis. Mult Scler Int. 2021;2021:5589562. Published 2021 Jun 3. DOI: https://doi.org/10.1155/2021/558956245. Paltamaa J, Sarasoja T, Leskinen E, Wikström J, Mälkiä E. Measures of physical functioning predict self-reported performance in self-care, mobility, and domestic life in ambulatory persons with multiple sclerosis. Arch Phys Med Rehabil. 2007;88(12):1649-1657. DOI: https://doi.org/10.1016/j.apmr.2007.07.032 PMID:18047881 DOI: https://doi.org/10.1016/j.apmr.2007.07.032
- Kieseier, B. C., & Pozzilli, C. Assessing walking disability in multiple sclerosis. Multiple sclerosis 2012 (Houndmills, Basingstoke, England), 18(7), 914-924. DOI: https://doi.org/10.1177/1352458512444498), DOI: https://doi.org/10.1177/1352458512444498
- Dujmovic I, Radovanovic S, Martinovic V, et al. Gait pattern in patients with different multiple sclerosis phenotypes. Mult Scler Relat Disord. 2017;13:13-20. DOI: https://doi.org/10.1016/j.msard.2017.01.012 PMID:28427694 DOI: https://doi.org/10.1016/j.msard.2017.01.012