Mim-pong: a serious game for assessment and treatment of the lower limb in hemiparetic stroke patients

Authors

  • Fernando L. F. Eichinger Faculty of Physiotherapy and Graduate Program in Health and Environment, University of Joinville Region, Joinville - Brazil https://orcid.org/0000-0002-4385-4853
  • Fabrício Noveletto Faculty of Electrical Engineering, State University of Santa Catarina, Joinville - Brazil https://orcid.org/0000-0003-0310-4262
  • Susana C. Domenech Faculty of Design, State University of Santa Catarina, Florianopolis - Brazil
  • Thierry Moulin Laboratory for Integrative Neuroscience and Cognitive Psychology (LINC) UMR 1322 INSERM, University of Franche-Comté, Besançon - France https://orcid.org/0000-0002-6639-8117
  • Yoshimasa Sagawa Laboratory for Integrative Neuroscience and Cognitive Psychology (LINC) UMR 1322 INSERM, University of Franche-Comté, Besançon - France https://orcid.org/0000-0002-1024-3095
  • Antonio Vinicius Soares Faculty of Physiotherapy and Graduate Program in Health and Environment, University of Joinville Region, Joinville - Brazil and Laboratory for Integrative Neuroscience and Cognitive Psychology (LINC) UMR 1322 INSERM, University of Franche-Comté, Besançon - France https://orcid.org/0000-0001-6090-1423

DOI:

https://doi.org/10.33393/aop.2025.3301

Keywords:

Exercise therapy, Hemiparesis, Lower extremity, Rehabilitation, Serious Games, Stroke

Abstract

Introduction: The motor impairment evidenced post-stroke results in limitations to performing activities of daily living (ADL), especially when it involves locomotion. The Serious Games (SG) are an interesting therapeutic option, as they allow the performance of exercises according to stroke treatment guidelines. However, there is little research exploring the evaluation potential of SG. This study aimed to evaluate the possible metric properties of the mim-pong SG in addition to the therapeutic effects.

Methods: Twenty-four hemiparetic stroke patients were divided into two non-randomized groups: the experimental group (EG) (n = 16) and the control group (CG) (n = 8). Participants were evaluated in terms of motor impairment (lower limb), muscle strength (MS), motor control, and functional mobility.

Results: The significant correlations observed between the score generated by the SG and clinical variables in both groups are highlighted, especially with MS (rho = 0.62-0.66; p = 0.000, and rho = 0.67-0.71; p = 0.002-0.005, for the experimental and CGs, respectively) and motor function of the lower limb for the EG (rho = 0.41, p = 0.018). In addition, the results indicated improvements in all variables in the EG, with superiority over the CG.

Conclusions: This study showed that the mim-pong serious game could be considered a potential resource for the assessment and treatment of hemiparetic stroke patients.

Downloads

Download data is not yet available.

References

  1. Lavis H, Van Vliet P, Tavener M. Stroke survivor, caregiver and therapist experiences of home-based stroke rehabilitation: a thematic synthesis of qualitative studies. Phys Ther Rev. 2023;28(2):157-173. https://doi.org/10.1080/10833196.2023.2180710 DOI: https://doi.org/10.1080/10833196.2023.2180710
  2. Campagnini S, Liuzzi P, Mannini A, et al. Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review. J Neuroeng Rehabil. 2022;19(1):52. https://doi.org/10.1186/s12984-022-01031-5 PMID:35659703 DOI: https://doi.org/10.1186/s12984-022-01031-5
  3. Ahmed T, Islam MR, Brahmi B, et al. Robustness and tracking performance evaluation of PID motion control of 7 DoF anthropomorphic exoskeleton robot assisted upper limb rehabilitation. Sensors (Basel). 2022;22(10):3747. https://doi.org/10.3390/s22103747 PMID:35632155 DOI: https://doi.org/10.3390/s22103747
  4. Park S, Tang A, Pollock C, et al. Telerehabilitation for lower extremity recovery poststroke: a systematic review and meta-analysis protocol. BMJ Open. 2022;12(3):e055527. https://doi.org/10.1136/bmjopen-2021-055527 PMID:35264359 DOI: https://doi.org/10.1136/bmjopen-2021-055527
  5. Xiong F, Liao X, Xiao J, et al. Emerging limb rehabilitation therapy after post-stroke motor recovery. Front Aging Neurosci. 2022;14:863379. https://doi.org/10.3389/fnagi.2022.863379 PMID:35401147 DOI: https://doi.org/10.3389/fnagi.2022.863379
  6. Wang CY, Olson SL, Protas EJ. Test-retest strength reliability: hand-held dynamometry in community-dwelling elderly fallers. Arch Phys Med Rehabil. 2002;83(6):811-815. https://doi.org/10.1053/apmr.2002.32743 PMID:12048660 DOI: https://doi.org/10.1053/apmr.2002.32743
  7. Eichinger FLF, Soares AV, Noveletto F, et al. Serious game for locomotor rehabilitation of hemiparetic stroke patients. Fisioter Mov. 2020;33:e003316. https://doi.org/10.1590/1980-5918.033.ao16 DOI: https://doi.org/10.1590/1980-5918.033.ao16
  8. Schwarz A, Al-Haj Husain A, Einaudi L, et al. Reliability and validity of a wearable sensing system and online gait analysis report in persons after stroke. Sensors (Basel). 2023;23(2):624. https://doi.org/10.3390/s23020624 PMID:36679424 DOI: https://doi.org/10.3390/s23020624
  9. Wang YF, Chen WY, Lee CT, et al. Combinations of scalp acupuncture location for the treatment of post-stroke hemiparesis: a systematic review and Apriori algorithm-based association rule analysis. Front Neurosci. 2022;16:956854. https://doi.org/10.3389/fnins.2022.956854 PMID:35992903 DOI: https://doi.org/10.3389/fnins.2022.956854
  10. Demeco A, Zola L, Frizziero A, et al. Immersive virtual reality in post-stroke rehabilitation: a systematic review. Sensors (Basel). 2023;23(3):1712. https://doi.org/10.3390/s23031712 PMID:36772757 DOI: https://doi.org/10.3390/s23031712
  11. Shao C, Wang Y, Gou H, et al. Strength training of the nonhemiplegic side promotes motor function recovery in patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2023;104(2):188-194. https://doi.org/10.1016/j.apmr.2022.09.012 PMID:36261056 DOI: https://doi.org/10.1016/j.apmr.2022.09.012
  12. Felius RAW, Geerars M, Bruijn SM, et al. Reliability of IMU-based gait assessment in clinical stroke rehabilitation. Sensors (Basel). 2022;22(3):908. https://doi.org/10.3390/s22030908 PMID:35161654 DOI: https://doi.org/10.3390/s22030908
  13. Winstein CJ, Stein J, Arena R, et al. American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98-e169. https://doi.org/10.1161/STR.0000000000000098 PMID:27145936 DOI: https://doi.org/10.1161/STR.0000000000000098
  14. Khokale R, S Mathew G, Ahmed S, et al. Virtual and augmented reality in post-stroke rehabilitation: a narrative review. Cureus. 2023;15(4):e37559. https://doi.org/10.7759/cureus.37559 PMID:37193429 DOI: https://doi.org/10.7759/cureus.37559
  15. Phan HL, Le TH, Lim JM, et al. Effectiveness of augmented reality in stroke rehabilitation: a meta-analysis. Appl Sci (Basel). 2022;12(4):1848. https://doi.org/10.3390/app12041848 DOI: https://doi.org/10.3390/app12041848
  16. Noveletto F, Soares AV, Mello BA, et al. Biomedical serious game system for balance rehabilitation of hemiparetic stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2018;26(11):2179-2188. https://doi.org/10.1109/TNSRE.2018.2876670 PMID:30334802 DOI: https://doi.org/10.1109/TNSRE.2018.2876670
  17. Mubin O, Alnajjar F, Al Mahmud A, et al. Exploring serious games for stroke rehabilitation: a scoping review. Disabil Rehabil Assist Technol. 2022;17(2):159-165. https://doi.org/10.1080/17483107.2020.1768309 PMID:32508187 DOI: https://doi.org/10.1080/17483107.2020.1768309
  18. Doumas I, Everard G, Dehem S, et al. Serious games for upper limb rehabilitation after stroke: a meta-analysis. J Neuroeng Rehabil. 2021;18(1):100. https://doi.org/10.1186/s12984-021-00889-1 PMID:34130713 DOI: https://doi.org/10.1186/s12984-021-00889-1
  19. Noveletto F, Soares AV, Eichinger FLF, et al. Biomedical serious game system for lower limb motor rehabilitation of hemiparetic stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2020;28(6):1481-1487. https://doi.org/10.1109/TNSRE.2020.2988362 PMID:32305932 DOI: https://doi.org/10.1109/TNSRE.2020.2988362
  20. Perrochon A, Borel B, Istrate D, et al. Exercise-based games interventions at home in individuals with a neurological disease: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(5):366-378. https://doi.org/10.1016/j.rehab.2019.04.004 PMID:31078706 DOI: https://doi.org/10.1016/j.rehab.2019.04.004
  21. Pereira VA, Eldebrando L, Silva HED, et al. Biomedical system to evaluate pulmonary function in patients with post-stroke hemiparesis. Fisioter Mov. 2020;33:e003338. https://doi.org/10.1590/1980-5918.033.ao38 DOI: https://doi.org/10.1590/1980-5918.033.ao38
  22. Fugl-Meyer AR. Post-stroke hemiplegia assessment of physical properties. Scand J Rehabil Med Suppl. 1980;7:85-93. PMID:6932734
  23. Appelros P. Characteristics of mini-mental state examination 1 year after stroke. Acta Neurol Scand. 2005;112(2):88-92. https://doi.org/10.1111/j.1600-0404.2005.00441.x PMID:16008533 DOI: https://doi.org/10.1111/j.1600-0404.2005.00441.x
  24. Souza LA, Martins JC, Teixeira-Salmela LF, et al. Validity and reliability of the modified sphygmomanometer test to assess strength of the lower limbs and trunk muscles after stroke. J Rehabil Med. 2014;46(7):620-628. https://doi.org/10.2340/16501977-1823 PMID:24849895 DOI: https://doi.org/10.2340/16501977-1823
  25. Miller W, Jeon S, Ye X. An examination of acute cross-over effects following unilateral low intensity concentric and eccentric exercise. Sports Med Health Sci. 2020;2(3):141-152. https://doi.org/10.1016/j.smhs.2020.08.002 PMID:35782286 DOI: https://doi.org/10.1016/j.smhs.2020.08.002
  26. Cunha BP, Freitas SMSFD, Menezes VVDBD, et al. Ipsilesional upper limb performance in stroke individuals: relationship among outcomes of different tests used to assess hand function. Fisioter Mov. 2016;29(3):561-568. https://doi.org/10.1590/0103-5150.029.003.AO14 DOI: https://doi.org/10.1590/0103-5150.029.003.AO14
  27. Billinger SA, Arena R, Bernhardt J, et al. American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Clinical Cardiology. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(8):2532-2553. https://doi.org/10.1161/STR.0000000000000022 PMID:24846875 DOI: https://doi.org/10.1161/STR.0000000000000022
  28. Veldema J, Jansen P. Resistance training in stroke rehabilitation: systematic review and meta-analysis. Clin Rehabil. 2020;34(9):1173-1197. https://doi.org/10.1177/0269215520932964 PMID:32527148 DOI: https://doi.org/10.1177/0269215520932964
  29. Chen SC, Kang JH, Peng CW, et al. Adjustable parameters and the effectiveness of adjunct robot-assisted gait training in individuals with chronic stroke. Int J Environ Res Public Health. 2022;19(13):8186. https://doi.org/10.3390/ijerph19138186 PMID:35805845 DOI: https://doi.org/10.3390/ijerph19138186
  30. Lodha N, Patel P, Casamento-Moran A, et al. Strength or motor control: what matters in high-functioning stroke? Front Neurol. 2019;9:1160. https://doi.org/10.3389/fneur.2018.01160 PMID:30687217 DOI: https://doi.org/10.3389/fneur.2018.01160
  31. Verrienti G, Raccagni C, Lombardozzi G, et al. Motivation as a measurable outcome in stroke rehabilitation: a systematic review of the literature. Int J Environ Res Public Health. 2023;20(5):4187. https://doi.org/10.3390/ijerph20054187 PMID:36901206 DOI: https://doi.org/10.3390/ijerph20054187
  32. Dorsch S, Ada L, Sorial T, et al. The relationship between strength of the affected leg and walking speed after stroke varies according to the level of walking disability: a systematic review. Phys Ther. 2021;101(12):pzab233. https://doi.org/10.1093/ptj/pzab233 PMID:34636921 DOI: https://doi.org/10.1093/ptj/pzab233
  33. Harjpal P, Qureshi MI, Kovela RK, et al. Efficacy of bilateral lower-limb training over unilateral lower-limb training to reeducate balance and walking in post-stroke survivors: a randomized clinical trial. Cureus. 2022;14(10):e30748. https://doi.org/10.7759/cureus.30748 PMID:36447690 DOI: https://doi.org/10.7759/cureus.30748
  34. Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407-415. https://doi.org/10.1016/0197-2456(89)90005-6 PMID:2691207 DOI: https://doi.org/10.1016/0197-2456(89)90005-6
  35. Lee MY, Sung KS, Ham H, et al. Knee extensor strength measurement in patients with limited physical activity using a supine dynamometer anchoring frame. Ann Rehabil Med. 2020;44(6):502-509. https://doi.org/10.5535/arm.20056 PMID:33440098 DOI: https://doi.org/10.5535/arm.20056
  36. Veerbeek JM, van Wegen E, van Peppen R, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. https://doi.org/10.1371/journal.pone.0087987 PMID:24505342 DOI: https://doi.org/10.1371/journal.pone.0087987
  37. Viana RB, de Oliveira VN, Dankel SJ, et al. The effects of exergames on muscle strength: a systematic review and meta-analysis. Scand J Med Sci Sports. 2021;31(8):1592-1611. https://doi.org/10.1111/sms.13964 PMID:33797115 DOI: https://doi.org/10.1111/sms.13964
  38. Park JS, Lee G, Choi JB, et al. Game-based hand resistance exercise versus traditional manual hand exercises for improving hand strength, motor function, and compliance in stroke patients: a multi-center randomized controlled study. NeuroRehabilitation. 2019;45(2):221-227. https://doi.org/10.3233/NRE-192829 PMID:31498145 DOI: https://doi.org/10.3233/NRE-192829
  39. Tăut D, Pintea S, Roovers JWR, et al. Play seriously: effectiveness of serious games and their features in motor rehabilitation. A meta-analysis. NeuroRehabilitation. 2017;41(1):105-118. https://doi.org/10.3233/NRE-171462 PMID:28527226 DOI: https://doi.org/10.3233/NRE-171462
  40. Hunnicutt JL, Gregory CM. Skeletal muscle changes following stroke: a systematic review and comparison to healthy individuals. Top Stroke Rehabil. 2017;24(6):463-471. https://doi.org/10.1080/10749357.2017.1292720 PMID:28251861 DOI: https://doi.org/10.1080/10749357.2017.1292720
  41. Chang SH, Francisco GE, Zhou P, et al. Spasticity, weakness, force variability, and sustained spontaneous motor unit discharges of resting spastic-paretic biceps brachii muscles in chronic stroke. Muscle Nerve. 2013;48(1):85-92. https://doi.org/10.1002/mus.23699 PMID:23605647 DOI: https://doi.org/10.1002/mus.23699
  42. Ocklenburg S, Gerding WM, Arning L, et al. Myelin genes and the corpus callosum: proteolipid protein 1 (PLP1) and contactin 1 (CNTN1) gene variation modulates interhemispheric integration. Mol Neurobiol. 2017;54(10):7908-7916. https://doi.org/10.1007/s12035-016-0285-5 PMID:27864734 DOI: https://doi.org/10.1007/s12035-016-0285-5
  43. Stewart JC, Dewanjee P, Tran G, et al. Role of corpus callosum integrity in arm function differs based on motor severity after stroke. Neuroimage Clin. 2017;14:641-647. https://doi.org/10.1016/j.nicl.2017.02.023 PMID:28348955 DOI: https://doi.org/10.1016/j.nicl.2017.02.023
  44. Li Y, Wu P, Liang F, et al. The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients. PLoS One. 2015;10(4):e0122615. https://doi.org/10.1371/journal.pone.0122615 PMID:25875333 DOI: https://doi.org/10.1371/journal.pone.0122615
  45. Dragert K, Zehr EP. High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Exp Brain Res. 2013;225(1):93-104. https://doi.org/10.1007/s00221-012-3351-x PMID:23196803 DOI: https://doi.org/10.1007/s00221-012-3351-x
  46. Ghazavi Dozin SM, Mohammad Rahimi N, Aminzadeh R. Wii fit-based biofeedback rehabilitation among post-stroke patients: a systematic review and meta-analysis of randomized controlled trial. Biol Res Nurs. 2024;26(1):5-20. https://doi.org/10.1177/10998004231180316 PMID:37247514 DOI: https://doi.org/10.1177/10998004231180316
  47. Spina S, Facciorusso S, D’Ascanio MC, et al. Sensor based assessment of turning during instrumented Timed Up and Go Test for quantifying mobility in chronic stroke patients. Eur J Phys Rehabil Med. 2023;59(1):6-13. https://doi.org/10.23736/S1973-9087.22.07647-X PMID:36511168 DOI: https://doi.org/10.23736/S1973-9087.22.07647-X
  48. Lenkulkul F, Franco G, Soares AV, et al. Jogo Sério para reabilitação de hemiparéticos por acidente vascular cerebral: impacto na qualidade de vida. RSD. 2022;11(14):e87111435976. https://doi.org/10.33448/rsd-v11i14.35976 DOI: https://doi.org/10.33448/rsd-v11i14.35976
  49. Peng QC, Yin L, Cao Y. Effectiveness of virtual reality in the rehabilitation of motor function of patients with subacute stroke: a meta-analysis. Front Neurol. 2021;12:639535. https://doi.org/10.3389/fneur.2021.639535 PMID:34025553 DOI: https://doi.org/10.3389/fneur.2021.639535
  50. Flansbjer UB, Holmbäck AM, Downham D, et al. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005;37(2):75-82. https://doi.org/10.1080/16501970410017215 PMID:15788341 DOI: https://doi.org/10.1080/16501970410017215
  51. Soares AV, Borges Júnior NG, Hounsell MS, et al. A serious game developed for physical rehabilitation of frail elderly. European Research in Telemedicine/La Recherche Européenne En Télémédecine. 2016;5:45-53. https://doi.org/10.1016/j.eurtel.2016.05.003. DOI: https://doi.org/10.1016/j.eurtel.2016.05.003
  52. Van Hoornweder S, Vanderzande L, Bloemers E, et al. The effects of transcranial direct current stimulation on upper-limb function post-stroke: a meta-analysis of multiple-session studies. Clin Neurophysiol. 2021;132(8):1897-1918. https://doi.org/10.1016/j.clinph.2021.05.015 PMID:34157634 DOI: https://doi.org/10.1016/j.clinph.2021.05.015
  53. Dromerick AW, Geed S, Barth J, et al. Critical Period After Stroke Study (CPASS): a phase II clinical trial testing an optimal time for motor recovery after stroke in humans. Proc Natl Acad Sci USA. 2021;118(39):e2026676118. https://doi.org/10.1073/pnas.2026676118 PMID:34544853 DOI: https://doi.org/10.1073/pnas.2026676118
  54. Mojtabavi H, Shaka Z, Momtazmanesh S, et al. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J Transl Med. 2022;20(1):126. https://doi.org/10.1186/s12967-022-03312-y PMID:35287688 DOI: https://doi.org/10.1186/s12967-022-03312-y
  55. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-872. https://doi.org/10.1038/nrn2735 PMID:19888284 DOI: https://doi.org/10.1038/nrn2735